高分解能電荷逐次積分 LSI の開発

福富 雅彦*

Development of high resolution Charge Successive Integrator LSI

Masahiko Fukutomi

1. はじめに

テレスコープアレイ(TA: Telescope Array)計画 では、光電子増倍管(PMT: Photo-Multiplier Tube)から送られてくる電荷を電圧に変換する 96dB(16ビット分)のダイナミックレンジを持 つ電荷積分器を必要としている[1]。この計画では、 宇宙線が飛来したとき大気中で発光する蛍光を連 続的に観測する。このため、積分器は5MHzで連 続的に電荷-電圧変換を行う必要がある。現在、こ の回路には、ディスクリート部品を用いた開発・ 試験が行われている[2]。しかし、実際の実験では、 約10万個を使用するため、LSI化が不可欠とな ってくる。

近年、半導体プロセスの進歩に伴いアナログ-デジタル混載の CMOS LSI の開発・研究が盛ん になっている。この研究では、東京大学大規模集 積システム設計教育研究センター(VDEC: VLSI Design and Education Center)を利用して[3]、 TA 計画での利用を目的とした CMOS 電荷逐次積 分 LSI の設計・試作を行った。

CMOS のアナログ-デジタル混載 LSI には、設 計上のさまざまな困難がある。まず第1には、デ ジタル回路の発生するノイズをいかにアナログ回 路に伝播させないかである。第2に、CMOS は 1/f ノイズがバイポーラより 10~100 倍大きく、 低周波ノイズの小さい回路をいかに作るかである。 第3に、バイポーラより原理的に増幅度の小さい MOS トランジスタを用いて、優れた特性をもつ アナログ部品を設計することである。この研究で は、これらの困難をひとつずつ解決して、所望の 電荷逐次積分 LSI を開発することを目的とする。 本研究では、デジタル回路から発生するクロッ クノイズ、サブストレートノイズをアナログ部へ 伝播させないような設計技法について述べるとと もに、CSIの測定・評価についても述べる。最後 に、この評価で明らかとなった問題点を改善させ た量産化試作について議論した。

2. 電荷逐次積分回路

2.1. 動作原理および特徴

電荷積分器は、電荷を電圧に変換する回路であ る。電荷積分器は、外部より入力されるホワイト ノイズの影響を受けない測定ができる特徴をもっ ている。しかし、積分時間より長い低周波ノイズ や LSI 自身から発生するノイズの影響は受ける。 一般的に低周波ノイズに関しては、ベースライン と信号を連続してサンプリングを行い、その差を とることで除去できる[4]。また、LSI 自身のノイ ズに関しては、できる限り小さくするような設計 が必要である。

TA 計画では、DSP(Digital Signal Processor) を用いてベースライン揺らぎをモニターしている。 信号の大きさは、サンプルされた信号からベース ラインをデジタル的に差し引くことで求められ、 このとき低周波ノイズも除去される。電荷逐次積 分回路(CSI: Charge Successive Integrator)は、 このようなシステムで利用されることを前提とし て開発が進められている。

図1に CSI の回路図を示す。CSI は OP アンプ を用いた4個の積分器とスイッチ群より構成され ている。それぞれの積分器は、サンプル(Sample) 保持(Hold) 放電(Discharge) 待機(Wait) の4状態を持っており、スイッチにより循環的に 切り替えられる。保持状態のとき、出力電圧はア ナログ-デジタル変換が行われる。

2.2. LSI の構成

CMOS のアナログ-デジタル混載の LSI では、 96dB の S/N を確保することは非常に難しい。こ のため、違ったレンジを持つ 2 つの CSI を切り替 える構成とした。それぞれの CSI は、72dB (12 ビット分)の S/N を達成することを目標とし、1 倍と 16 倍 (4 ビット分)に増幅された入力信号 を信号の大きさに応じて切り替えながら出力する。 非常に小さな信号は、外部の高性能バイポーラ増 幅器で 16 倍に増幅され、LSI 内部のノイズの影 響を受けないレベルにして入力する。

図2は、1チャンネル分のCSIの構成図を示し ている。1倍(x1)と16倍(x16)の入力信号は、 4つの積分器(Integrator)を1組とした積分回路部 にパストランジスタを通して入力される。パスト ランジスタは、Rotator により5MHzの外部クロ ック(CLK)に同期して循環的にON/OFF制御 される。Comparator は、入力信号の大きさによ リレンジを切り替えるためのものである。この Comparator のスレッショルドは6ビットのデジ タル-アナログ変換器(6bitDAC)より与えられる。 選択された CSI の出力は、パストランジスタを通 して出力(CHIP_OUT)される。どちらのレンジ が使われたかという情報は、High/Low Signal で 出力される。LSI 外部に搭載する高精度 OP アン プのバイアス回路(10bitDAC)も搭載している。2 つの DAC はシリアル接続されていて、外部より SdataとSCLKを用いてシリアルデータとして与 えられる。今回、開発したLSI は、4 チャンネル 分の CSI を搭載している。ただし、Rotator は各 チャンネル共通で使用されている。10bitDAC も 1回路のみである。

図 2 CSI の構成図(1 チャンネル分)

2.3. LSI 設計

表1、2、3、4 に CSI に使用した部品の設計バ ラメータを示す。OP アンプとコンパレータの値 はシミュレーション値である。

表1 パストランジスタ設計パラメータ

パストランジスタ Ron ~ 300			
NMOS	W/L	10.8 µ m /0.6 µ m	
PMOS	W/L	43.2 µ m /0.6 µ m	

表 2 OP アンプ設計パラメータ

OP アンプ	
オープンループゲイン	70.3dB
フェーズマージン	40 °
スルーレート	155.6V/µs
セトリングタイム	51.5nsec
積分器用コンデンサ	26.5pF

表3 コンパレータ設計パラメータ

コンパレータ	クロック式	リニア
オーバードライブ電圧	6mV	29mV

表4 CSIの入出力レンジ

電源電圧	5V	
入力可能電圧	0.5V~4.5V	
出力可能電圧	1V~4V	

今回、開発した LSI は、ROHM 社の 0.6µm ルール CMOS プロセスを使用した。 LSI 設計で は Cadence のツールを用いた。

 図3 テスト用LSIのレイアウト(4.5mm角)
 図3にテスト用のLSIのレイアウトを示す。図の 左側に4チャンネル分のCSIがあり、中心部には、
 6bitDAC、Rotatorが配置されている。電源供給
 は、22.5µm幅のラインを使用、各レンジ4個の CSIにはすべて左上部から、その他はブロックご とにその近傍から行われている。

3. 測定結果

シミュレーションは、DIVA を用いてレイアウ トの寄生容量抽出後、HSPICE(Level 28)を用 いて行った。このとき SPICEのモデルライブラ リは、ROHM 社から提供されているものを用い た。さらにLSI試作後、専用のテスト基板(4層 FR4)を製作し実測を行った。

3.1. 過渡特性

図4と5とは、CSI に三角波(幅2µs 振幅 0.2V)を入力したときの過渡特性を示している。 実測は、パルスジェネレータをもちいて信号を入 力した。階段状の波形がCSIの出力で、滑らかな 逆向きの三角波が入力信号である。

シミュレーションでは、スパイク上のノイズが 観測されるものの正しく動作していることがわか る。実測波形は、測定器や測定回路の寄生容量等 のため波形がなまっているもののシミュレーショ ンと同様に動作していることがわかる。ただし、 入力三角波が対称でないために出力波形が対称で ない。

図 7 2 レンジ動作波形(リニア)

図6と図7に2つのレンジを切り替えたときの シミュレーション波形を示す。スレッショルドを 境に2倍から1倍に切り替わっている。クロック 式のコンパレータを用いた場合、スパイクノイズ と切り替え時のノイズが激しいことがわかる。一 方、リニアコンパレータの場合は、クロックノイ ズは消え、わずかな切り替え時のノイズだけが残 っている。

3.2. DC 特性

20個のLSIを用いてDC特性の測定を行った。 この測定では、パルスジェネレータを用いて、幅 200nsecの三角波を作り波高値を 2.5V から 1.7V まで(0pC から 104pC に相当) CSI に入力して 出力電圧を測定した。ここで、CSI の基準電位を 2.5V としたが、すべての図は 2.5V を 0V として プロットしている。図中では、2.5V が 5V(電源 電圧)である。

すべてのLSIの測定結果を図8にまとめて示す。 この図より20個中4個のチップが動作不良を起 こしていることがわかる。この4つのチップの動 作不良は、集積回路の製造時に起きる初期不良と 考えられる。

図9に正しく動作したLSIの平均値を誤差とと もに示す。直線は、60pCまでの点を用いて最小2 乗法を用いてフィットしたものである。すべての LSIにおいて、約60pCまでの電荷量であれば、 線形性が保たれていることがわかる。この領域で は、誤差もほとんど等しくばらつきも一定だと考 えられる。

図 10 は、各チャンネル別に不良を除いた LSI

の平均値を示す。図より ch1 の飽和電圧が一番大きく、次第に小さくなっていることがわかる。この原因は、電源ラインが ch1 側から ch4 側へ伸びており、電源ラインの抵抗による電圧降下によるものと考えられる。

図9 不良を除いた LSI の平均値とばらつき (ch1 のみ)

3.3. オフセット

CSI に一定電圧を入力して出力電圧を測定した この測定では高周波ノイズ成分を除去するために 20MHz のカットオフ周波数をもつローパスフィ ルターを挿入して観測している。

図 11(上)は、入力電圧 2.5V の時の出力電圧で ある。この図より4クロックごとの波形パターン であることがわかる。CSI は、4 つの電荷積分器 で構成されているため、オフセット電圧の違いが 現れているものと考えられる。この図より、オフ セット電圧の最大値は 15mV であることがわか る。このオフセット誤差には、グランドラインの 配線長の違いも影響しているものと考えられる。

図 11(下)は、入力電圧 2.2V の時の波形である。 この時、CSI からの出力電圧の最大誤差は 35mV となる。このバラツキには、オフセット誤差とコ ンデンサのバラツキが含まれているものと考えら れる。

図 11 CSI のオフセット電圧

3.4. ノイズ特性

図 12 に 2.5V 一定電圧入力時の CSI 出力波形 を示す。100nsec 周期で激しいノイズが観測され る。このノイズは、5MHz のクロックの立ち上が りと立下りに同期している。Rotator や、クロッ ク式コンパレータに使用しているクロックが、配 線間やサブストレートを伝わってアナログ回路に 影響を及ぼしていると推測される。

4. 考察

4.1. DC 特性およびオフセット

今回、測定を行った CSI は、図 13(左)のように

接続していたため、電源とグランドラインからく るメタルラインのわずかな抵抗差により電圧降下 が生じているものと考えられる。これは、最大電 圧の降下とオフセット電圧として現れる可能性が ある。この問題を解決するためには、電源ライン とグランドラインを同じ長さにすればよい。そこ で図 13(右)のような Tree 構造を用い、電源ライ ンの均等化を行うことを提案する。基準電圧ライ ンに関してもこのレイアウトを行ったほうが良い。

図 13 Tree 構造の電源およびグランドライン この方法を用いることにより 4 つの積分器出力 のばらつきは、コンデンサの容量ばらつきと OP アンプ自体のオフセットによるものだけになり、 20mV 以下にできる可能性がある。

4.2. 過渡特性

クロック式のコンパレータを用いるとレンジ切り 替え時のスパイクノイズが、サンプリングタイミ ングと重なることが懸念される。このため、リニ アコンパレータを用いた回路を考えたほうが良い。 しかし、クロック式に比べてリニアコンパレータ は、スルーレートが小さく、ノイズによる誤動作 をする可能性が高い。誤動作を起こさないために は、ヒステリシスを持ったコンパレータを使う必 要がある。

4.3. ノイズ特性

CSI は、アナログデジタル混載 LSI であるため クロストークノイズが問題となる。このノイズは、 レイアウト設計によりある程度までは低減できる ため、以下のような対策を用いる。

a) ブロック毎に、アナログ回路とデジタル回
 路電源ラインを分離する

- b) N-Well ガードリングによる、サブストレートでのアナログ領域とデジタル領域を分離する(図14参照)
- c) センシティブなアナログ回路とデジタル回
 路をできるだけ遠くに離す
- b) LSI内部にできるだけ多くのバイパスコン
 デンサを使用する

4.4. 量産用 CSI の開発

図 15 量産試作LSIのレイアウト図(3.9mm角) 図 15 は、これまで考察した問題点を改善した LSIのレイアウト図である。このLSIでは、電源 ラインによる電圧降下をできるだけ少なくするた めに、両サイド2列にCSIを配置した。すべての 配線は、できるだけ左右対照にレイアウトしてい る。ノイズ発生源となるRotatorはレイアウト図 の一番下のほうに位置し、アナログ回路からでき るだけ遠ざけている。さらに、Rotatorから出力 されるすべてのクロックラインは、シールドされ ている。電源ラインは、それぞれの部品にできる だけ独立にした。また、電源ラインにはできる限 り多くのバイパスコンデンサを配置した[5]。

5. まとめ

今回、アナログデジタル混載 CMOS LSI であ る CSI の設計・試作・測定を行った。この測定か ら、電源とグランドラインの配線長の違いから、 最大 15mV のオフセットばらつきが確認された。 コンデンサのばらつきを含めると最大 35mV の オフセットばらつきがあった。これは、ディスク リート部品で作られた CSI とほぼ同等の値であ る。考察を行った結果、Tree 構造を用いたレイア ウトを行うことで 20mV ぐらいまで抑えること ができることがわかった。

また、テスト LSI では Vp-p=80mV のクロック ノイズが CSI 出力に現れていた。これも、リニア コンパレータコンパレータの使用とクロックライ ンのシールドにより解決できるものと考えている。 現在、これらの問題をすべて改善した量産用 LSI を試作中である。今後、この LSI の特性を測定し 性能の改善を確認してほしい。

参考文献

- [1] The Telescope Array Project Design Report, The TA Collaboration, 19 July 2000.
- [2] Y. Arai, T. Aoki, M. Fukutomi, et al., "Development of Front-End Electronics for the Telescope Array Project" Proc. of 26th International Cosmic Ray Conference, Salt Lake City, Utah, August 17-25, Vol.5, pp. 393-396 (1999).
- [3] VDEC のホームページ http://www.vdec.u-tokyo.ac.jp.
- [4] W.Buttler, B.J.Hosticka and G.Lutz "Noise Filtering for Readout Electronics" Nuclear Instruments and Methods in Physics Research, A288 pp.187-190 (1990).
- [5] 酒井 雅司, 福富 雅彦 "逐次電荷積分 LSI の 量産化試作"電気関係学会九州支部第53回 連合大会講演論文集, pp.398, 2000